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Abstract

INTRODUCTION:Not all individuals who experiencemild cognitive impairment (MCI)

transition through progressive stages of cognitive decline at the same rate, if at all.

Previous observational studies have identified the retrosplenial cortex (RSC) as an

early site of hypometabolism in MCI which seems to be predictive of later transition

to Alzheimer’s disease (AD).

METHODS:WeexaminedN=399MCI subjectswith baseline 18F-fluorodeoxyglucose

positron emission tomography. Subjects were classified based on whether their

diagnosis converted fromMCI to AD.

RESULTS:Whole-brainmetabolismwas decreased in converters (MCI-AD). This effect

was more prominent at the RSC, where MCI-AD subjects showed even greater

hypometabolism. Observations of RSC hypometabolism and its utility in predicting

transition fromMCI-ADwithstood statistical analyses in a large retrospective study.

DISCUSSION: These results point to the utility of incorporating RSC hypometabolism

into predictive models of AD progression risk and call for further examination of

mechanisms underlying this relationship.

KEYWORDS

biomarkers, cognitive decline, FDG-PET, metabolic impairment, neurodegeneration

Highlights

∙ Not all individuals who developMCI will progress to AD.

∙ Individuals withMCI who progress to AD show early whole-brain hypometabolism.

∙ Early hypometabolism is particularly prominent at the RSC.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder wherein

many affected individuals transition through prodromal stages of mild

cognitive impairment (MCI) to progressive dementia. However, not all

individualswhoexperienceMCI transition through these stages of cog-

nitive decline at the same rate, if at all.1–5 In fact, some individuals do

not progress, or convert from MCI to AD. To better intervene in the

early stages ofAD it is imperative thatweunderstand the signs and risk

factors that predict conversion betweenMCI and AD.

The retrosplenial cortex (RSC) (BA29/30) is a site of particular inter-

est in the study of AD progression as recent findings have suggested

that the connectivity of the RSC is an important mediator of healthy

cognitive aging.6–8 Nearly30years ago theRSCwasobserved tobeone

of the earliest areas of dysfunction in AD.9–11 Here, hypometabolism

has been observed during the early prodromal stages ofMCI. Themag-

nitude of RSC hypometabolism was greatest in individuals who would

later progress toAD.12–14 These early studies played critical roles high-

lighting theRSCas anearly site of dysfunctionwith potential predictive

power over the transition from MCI to AD.13,15,16 However, limited

sample sizes restrict the potential significance of these findings.

In the present study, we took advantage of the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database which contains a large

cohort of standardized subject imaging to revisit the question of RSC

hypometabolismas a predictor ofMCI toADconversion. To extend and

validate prior findings, we compared subjects that had been classified

as non-converters (MCI) or converters (MCI-AD) to assess whether

RSC hypometabolism during the early stages of MCI is able to predict

subsequent disease progression.

2 METHODS

2.1 Subjects

Data used in the preparation of this manuscript were obtained from

the ADNI database (https://adni.loni.usc.edu). The ADNI was launched

in 2003 as a public-private partnership led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

MCI and early AD. For up-to-date information, see http://www.adni-

info.org.

Subjects from the ADNI-1, ADNI-GO, and ADNI-2 phases were

screened for the following inclusion criteria: (1)MCIdiagnosis upon ini-

tial screening; (2) baseline 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) scan; (3) structural T1-weighted MRI imaging

(MP-RAGE sequence) within 1 year of the FDG-PET scan; and (4)Mini-

Mental State Examination (MMSE) scores from baseline to a two-year

follow-up timepoint. All scansweremanually inspected for quality con-

trol prior to analysis. Amyloid-beta (Aβ) positivity was not required for
inclusion as, in clinical practice, many subjects living with MCI have

RESEARCH INCONTEXT

1. Systematic review: The authors extensively reviewed

literature (eg, PubMed), meeting abstracts, and presenta-

tions. Based on the available literature, the identification

of the retrosplenial cortex (RSC) as an early site of

metabolic dysfunction was based on small sample sizes

with limited statistical analysis. With access to large ret-

rospective databases, these early questions can be revis-

ited and extended. Relevant citations are appropriately

cited.

2. Interpretation: Our findings indicate that in a large sam-

ple of MCI subjects, early brain hypometabolism is pre-

dictive of the later development of AD. Furthermore, the

metabolic impairment observed in individuals who will

later develop AD is even more pronounced when analy-

ses are tuned to theRSC. This suggests that themetabolic

activity of the RSC may serve as an early biomarker for

the risk of cognitive decline.

3. Futuredirections: Future studies could examinepotential

mechanisms through which RSC hypometabolism arises

within the context of early mild cognitive impairment.

an unknown Aβ status and Aβ positivity does not mean progression in

the majority of MCI subjects.17 However, when available, Aβ- and tau-
positivity were considered during analyses using published amyloid

(18F-florbetapir) and tau (18F-flortaucipir) PET datasets.18 Individu-

als with a brain-wide standardized uptake value ratio (SUVr) of >1.0

in either of these measures were considered to be positive for their

respective pathologies.

Neuroimaging data and MMSE scores were downloaded from the

ADNI repository on February 13, 2024. Ethical approval was obtained

by the ADNI investigators at each participating ADNI site, and all par-

ticipants provided written informed consent. All analysis of human

neuroimaging data was conducted with the approval of the University

of Calgary Conjoint Health Research Ethics Board (REB22-0776).

2.2 Conversion criteria

Subjects in the ADNI database are labeled as cognitively normal (CN),

MCI, or AD; however, changes in diagnosis over time are also reported.

In the current study, only subjects who were classified as MCI during

baseline diagnostic assessments were considered. Further information

on ADNI diagnostic criteria can be obtained from the ADNI website

(https://adni.loni.usc.edu/methods/documents/).

Subjectswhose diagnosis did not change over the course of the trial,

according to ADNI guidelines, were considered to be non-converters

(MCI). However, subjects whose symptoms worsened to meet AD cri-

teria were classified as converters (MCI-AD). ADNI conversion status
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was verified in the current study by comparing the stability of MMSE

scores over time.

2.3 Neuroimage preprocessing

Specific details about the imaging protocols employed across ADNI

sites can be found on the ADNI website (http://adni.loni.usc.edu/

methods/). All images were retrieved from the ADNI database

in their most pre-processed format. Scans were processed using

SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

and the PETPVE12 toolbox (https://github.com/GGonEsc/petpve12)

using previously described pipelines.19 Briefly, structural MRI images

were skull-stripped; segmented into grey matter, white matter, and

cerebrospinal fluid; and normalized in Montreal Neurological Insti-

tute (MNI) spacewith co-registered FDG-PET scans.20 FDG-PET scans

were corrected for partial volume effects using the 3-compartmental

voxel-wiseMüller-Gärtner method.21

2.4 Spatial normalization and quantification

Statistical parametric mapping was performed using SPM12 software.

Voxel-wise t-test comparisonswere performedbetweenMCI andMCI-

ADgroups toassess relativehypometabolism fromFDG-PETscans. For

subsequent analyses, each scan was matched to a brain parcellation

atlas using DARTEL registration.22–24 Intensity values were normal-

ized based on the mean voxel intensity across the cerebellum to yield

an SUVr.24,25 The SUVr obtained from bilateral regions of interest

(ROIs) corresponding to the RSC was then compared between groups.

The bilateral RSC seeds each measured 5 mm in diameter and were

centered about MNI coordinates x = ± 6, y = −50, z = 10, based on

expected local activitymaxima for this region.26,27 The SUVr across the

rest of the brain not includedwithin these seeds was also assessed as a

measure of brain-wide glucosemetabolism.

2.5 Statistics and data visualization

Statistical parametric mapping analyses were performed in SPM12

usingMATLAB (MathWorks Inc., R2020a). From these comparisons, t-

score maps were thresholded based on a family-wise error-corrected

p< 0.05.

All other statistical analyses were performed in Prism (GraphPad

Software, Version 9.4.0). FDG-PET SUVr within the RSC and across

the rest of the brain was analyzed using two-way analysis of variance

(ANOVA).Multiple logistic regression analyseswere used to assess the

extent to which RSC FDG-PET SUVr, brain-wide FDG-PET SUVr, Aβ-
PET SUVr, sex, and tau-PET SUVr were predictive of conversion from

MCI to AD.

Hypothesis testing was complemented by estimation statistics for

each comparison using https://estimationstats.com.28 For these esti-

mation statistics, the effect size (Cohen’s d) was calculated using a

bootstrap sampling distributionwith 5000 resamples alongwith a 95%

confidence interval (CI; bias-corrected and accelerated). All plots were

generated in either MATLAB or Prism and all figures were compiled in

Adobe Photoshop.

3 RESULTS

3.1 Subject demographics

Following the application of subject inclusion and conversion criteria,

we were left with four groups: male MCI, female MCI, male MCI-AD,

and female MCI-AD. These groups contained 114, 88, 121, and 76

subjects, respectively. Demographics have been outlined in Table 1.

MCI to AD conversion criteria were also assessed by comparing

the stability of MMSE scores at 6-month intervals across two years

(Figure 1). We observed a decrease in MMSE scores in both male

and female MCI-AD groups (three-factor mixed-effects ANOVA; Time

× Conversion Status Interaction: F(4,1211) = 16.01, p < 0.0001). The

slopes of linear regression lines fitted to these data differ signifi-

cantly from zero in the MCI-AD groups (male MCI-AD: F(528) = 35.61,

p < 0.0001; female MCI-AD: F(328) = 49.40, p < 0.0001). This was not

the case with the MCI groups, where MMSE scores remained stable

across this period (male MCI: F(433) = 0.5811, p = 0.4463; female MCI:

F(329) = 2.334, p= 0.1275).

3.2 Retrosplenial hypometabolism precedes
conversion from MCI to AD

FDG-PET signals were compared between male and female MCI and

MCI-AD groups upon intake into the ADNI trial. This approach allowed

TABLE 1 Subject demographics and baseline cognitive scores.

MaleMCI FemaleMCI MaleMCI-AD FemaleMCI-AD

N 114 88 121 76

Age (years) 75.28 ± 6.50 74.28 ± 7.56 75.46 ± 6.54 74.11 ± 6.89

Education (years) 16.57 ± 2.710 15.73 ± 2.80 16.31 ± 2.61 15.29 ± 2.83

Race (%White) 93.86% 88.64% 97.52% 96.05%

ΔMMSE (2 years) −0.48 ± 2.337 −0.50 ± 1.88 −2.27 ± 3.30 −2.81 ± 2.85

Abbreviations: AD, Alzheimer’s disease;MCI, mild cognitive impairment;MMSE,Mini-Mental State Examination.
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F IGURE 1 Stability ofMMSE scores over time. Black lines
represent linear regression lines for each group. The equations for
each of these lines have been provided in the figure legend. Data are
presented asmean± SEM. AD, Alzheimer’s disease;MCI, mild
cognitive impairment; MMSE,Mini-Mental State Examination; SEM,
standard error of themean.

us to assess whether metabolic changes can be found prior to the

transition to AD. Statistical parametric mapping revealed several clus-

ters of hypometabolism in MCI-AD groups relative to MCI groups

(Figure 2A,B). Peaks of hypometabolic activity were observed at MNI

coordinates considered to be part of the RSC in males (MNI: −2, −56,
26; T= 6.72; pFWE-corr < 0.001) and females (MNI:−4,−64, 32; T= 6.70;

pFWE-corr < 0.001). Additional peaks were observed in the angular gyri

in both sexes and in the left fusiform gyrus in females (Table 2).

To follow up on these results with a targeted analysis of the RSC,

the FDG-PET SUVr of this region was compared between male and

female MCI and MCI-AD groups (Figure 2C). A significant decline in

RSCFDG-PETSUVrwasobserved;wherein theMCI-ADgroup showed

hypometabolism prior to conversion to AD (two-factor ANOVA; main

effect of conversion status: F(391) = 30.97, p< 0.0001).

To ensure that the effects observed in the RSC were region-

specific and not the product of global hypometabolism, the global SUVr

from across the entire brain, excluding the RSC seeds, was analyzed.

Decreased brain-wide FDG-PET SUVr was observed in the MCI-AD

groups (Figure 2D; two-factor ANOVA; main effect of conversion sta-

tus: F(394) = 8.258, p = 0.0043). However, the effect size of global

hypometabolism was marginal in male MCI-AD converters (Cohen’s

d = −0.183). The difference in brain-wide FDG-PET SUVr between

MCI and MCI-AD was more prominent in female MCI-AD converters

(Cohen’s d = −0.497). However, the effect size was greatest and much

more balanced between sexes when analyses were targeted to the

RSC (males: Cohen’s d = −0.475; females: Cohen’s d = −0.659). These
results suggest that RSC-targeted analyses of glucose metabolism

may improve our ability to predict the conversion from MCI to AD,

particularly in male subjects.

3.3 Retrosplenial hypometabolism improves the
ability to predict conversion from MCI to AD in
individuals without Aβ or tau pathology

Using global Aβ- and tau-PET SUVr, subjects were classified as positive
or negative for ADpathology. Decreased FDG-PET SUVrwas observed

inpathology-positive subjectswhowould later convert fromMCI toAD

at both the level of RSC (Figure 2E; two-factor ANOVA; main effect

of conversion status: F(243) = 19.17, p < 0.0001) and across the rest

of the brain (Figure 2F; two-factor ANOVA; main effect of conversion

status:F(244) =9.780,p=0.0020). Examining individualswhowereneg-

ative for both Aβ and tau pathology, decreased FDG-PET SUVr was

only observed in the RSC of MCI-AD subjects (Figure 2G; two-factor

ANOVA; main effect of conversion status: F(44) = 4.727, p = 0.0351)

and not on a brain-wide level (Figure 2H). Furthermore, using multi-

ple logistic regressionwith sex, Aβ-PET SUVr, tau-PET SUVr, and either
RSC FDG-PET SUVr or brain-wide FDG-PET SUVr, it was determined

that RSC FDG-PET SUVr is a significant predictor of transition from

MCI to AD (|Z| = 3.181, p = 0.0015) while the FDG-PET SUVr is not

(|Z|= 1.390, p= 0.1645).

4 DISCUSSION

In the present study, we utilized the extensive collection of FDG-PET

scans in the ADNI database to compare the metabolic activity of the

RSC in MCI subjects who later converted to AD to those MCI subjects

who did not convert. We identified peaks in hypometabolic activity in

the converters compared to the non-converters corresponding to the

RSC in males and females and the left and right angular gyri, albeit

to a lesser extent in males than females. Thus, the hypometabolism of

the RSC seems to be the best predictor region when considering both

males and females. In addition, the morphology and connectivity of

the angular gyrus is known to be highly variable across individuals.29

Therefore, subsequent analyses focused on the metabolic activity of

the RSC compared to the rest of the brain. We identified that while

brain-wide metabolic activity is decreased in subjects who later tran-

sition to AD, this effect was more pronounced when the scope of the

analyses was restricted to the RSC. Importantly, the metabolic activity

of theRSCwasdecreased in individualswhoconverted fromMCI toAD

regardless of whether they expressedmeasurable Aβ or tau pathology.
Conversely, brain-wide hypometabolism was predictive of conversion

to AD only in Aβ and tau-positive individuals. These results support

the utility of the RSC as an early site of metabolic impairment and a

predictor of later transition fromMCI to AD.

These results point to the metabolic activity of the RSC as a poten-

tial biomarker to aid in identifying thoseMCI subjects who are most at

risk for further cognitive decline to AD. The identification of strongly

predictive biomarkers is particularly important when considering that

approximately 10% to 15% of individuals living with MCI progress to

further stages of AD each year. Currently, very few of the already

identified biomarkers currently being used to assist in predicting the

transition fromMCI to AD show exceptional predictive power on their
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TERSTEGE ET AL. 8983

F IGURE 2 (A,B) Differences in brain metabolism between subjects withMCI who do and do not transition to AD. Statistical parametric
mapping highlighting peaks of hypometabolism inmale (A) and female (B) subjects who transition fromMCI to AD relative to FDG-PET activity in
subjects who do not transition fromMCI. (C) Bar plot (left) showing FDG-PET SUVr at the RSC. Cumming estimation plot (right) showing the effect
size of the difference inmetabolic activity betweenMCI andMCI-AD inmale and female groups. (D) Bar plot (left) showing FDG-PET SUVr across
the rest of the brain. Cumming estimation plot (right) showing the effect size of the difference inmetabolic activity betweenMCI andMCI-AD in
male and female groups. (E,F) Bar plots (left) showing FDG-PET SUVr at the RSC (E) or across the rest of the brain (F) of individuals with positive Aβ
and/or tau status. Cumming estimation plots (right) showing the effect size of the difference inmetabolic activity betweenMCI andMCI-AD in
male and female groups. (G,H) Bar plots (left) showing FDG-PET SUVr at the RSC (G) or across the rest of the brain (H) of individuals with negative
Aβ and/or tau status. Cumming estimation plots (right) showing the effect size of the difference inmetabolic activity betweenMCI andMCI-AD in
male and female groups. Aβ, amyloid beta; AD, Alzheimer’s disease;MCI, mild cognitive impairment; FDG-PET, 18F-fluorodeoxyglucose positron
emission tomography; RSC, retrosplenial cortex; SUVr, standardized uptake value ratios.
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8984 TERSTEGE ET AL.

TABLE 2 Statistical parametric mapping of hypometabolic activity between subjects who transition fromMCI to AD and subjects who do not.

MALE

Set Cluster-level Peak-level MNI coordinates

p c pFWE kE puncorr pFWE T (ZE) puncorr X Y Z

<0.001 3 <0.001 1536 <0.001 <0.001 7.07 6.72 <0.001 −2 −56 26

Retrosplenial cortex

0.006 184 0.124 0.005 4.85 4.73 <0.001 −44 −74 42

Left angular gyrus

0.010 127 0.195 0.017 4.53 4.43 <0.001 50 −62 38

Right angular gyrus

FEMALE

Set Cluster-level Peak-level MNI coordinates

p c pFWE kE puncorr pFWE T (ZE) puncorr X Y Z

<0.001 4 <0.001 2135 <0.001 <0.001 7.05 6.58 <0.001 −48 −60 −28

Left angular gyrus

<0.001 2558 <0.001 <0.001 6.70 6.28 <0.001 −4 −64 32

Retrosplenial cortex

<0.001 682 0.006 <0.001 5.60 5.34 <0.001 42 −72 48

Right angular gyrus

0.002 297 0.044 0.002 5.11 4.92 <0.001 −60 −40 −14

Left fusiform gyrus

Note: MNI coordinates are presented inmm.

Abbreviations: AD, Alzheimer’s disease;MCI, mild cognitive impairment;MNI,Montreal Neurological Institute.

own.30 However, the inclusion ofmultiple classifiers in predictivemod-

els of AD progression has proven to be very powerful at predicting not

only the overall risk of conversion but also the rate.5,30–33 Therefore,

the inclusion of RSC hypometabolism, another early biomarker, may

help to strengthen overall predictionmodels.

In providing further support for the RSC as an early site of dysfunc-

tion in subjects who are at risk of developing AD, these results invite

targeted analyses of mechanisms underlying the relationship between

RSC hypometabolism and cognitive decline.

5 CONCLUSIONS

The present study demonstrates that hypometabolic activity can be

observed in the RSC during the early prodromal stages of MCI. We

show here that the magnitude of this RSC hypometabolism is fur-

ther decreased in subjects who will later transition from MCI to AD.

Furthermore, the effect size of the metabolic impairments observed

between individuals who do and do not progress to AD is greater at

the RSC than it is on a brain-wide level. Ultimately, these results point

to the RSC as a region of interest in the study and diagnosis of AD

progression.
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